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1. Introduction

Duality symmetries of various kinds have proven to be extremely important in string the-

ory. Generically, these relate different string theories. In view of their usefulness, attempts

have been made to formulate string theory in a duality-invariant manner resulting into

M-theory [1, 2], F-theory [3 – 5], S-theory [6, 7]. These formulations incorporated the geo-

metric realization of dualities, based on geometric data. More recently, with the improved

understanding of nongeometric backgrounds, attempts have been made to formulate a

duality-invariant string theory incorporating non-geometric data in the scheme. A formal-

ism has been proposed, in which T-duality is made manifest by doubling the compact part

of the target space [8]. This formalism has been found to be consistent with many of the

known results [1 – 23]. Our calculations in the present article provide further non-trivial

support for the formalism, extending to supersymmetric cases. This formulation, extend-

ing the non-linear sigma model (NLSM), is referred to as the “doubled formalism”. In

this formulation string theory is T-duality invariant and enhances spacetime dimensions

by adding extra coordinates conjugate to winding, called the dual coordinates. The bosonic

string theory has been formulated in the so-called T-fold backgrounds with geometric con-

straints and it has been shown that upon adding a certain topological term to the action,

the corresponding quantum theory is equivalent to the quantum version of the non-linear

sigma model defined on a worldsheet of arbitrary genus. A generalization of the formal-

ism to superstring theories has also been worked out [9] . Constraint-quantization of the

doubled formalism has been studied too [25, 24]. In an attempt to relate results from the

new theory with the usual results in string theory, the partition function for the bosonic

string on a circle has been calculated in the doubled formalism [26]. In the same vein it

is important to compare the results for superstrings and with targets with more than one

compact dimensions.

Here we consider an N = (1, 1) non-linear sigma model on a doubled torus T 2 × T̂ 2,

where the two-tori T 2 and T̂ 2 are dual to each other in the sense mentioned before. We
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compute the one-loop partition function of the two-torus. A two-torus is thought of as a

direct product of circles, T 2 ≃ S1 ×S1. On each of the circles the superfields are split into

ones with left and right chiralities. We write down the constraint equations for superfields

on the doubled torus and find that they satisfy the appropriate chirality conditions. These

constraints are interpreted as the chiral superfields which is crucial for establishing the

quantum consistency of the doubled theory. A supersymmetrically extended topological

term is needed for the superconformal invariance of the theory. The bosonic part of the

topological term contributes with an overall sign factor to the partition function. The

fermionic part of the same, on the other hand, does not contribute. This is of utmost

importance for the matching of the partition function with the type-II results.

In section 2 we write down the action of the doubled N = (1, 1) NLSM as well as

the superfields along with the constraints. The equation of motion for bosons on a torus

have instanton solutions. In section 3 we present the computation of the one-loop partition

function for the instanton sector for bosons [26] on a two-torus. A Poisson re-summation is

required for the holomorphic factorization of the partition function. These computations

for the bosons yield the sum over the internal momenta. We discuss the contributions from

the bosonic and fermionic oscillators to the partition function, in section 4, in terms of

the well-known modular functions. The fermionic contributions to the partition function

after suitable GSO projections are found to match with the type-IIA and type-IIB results.

Finally in section 5 we draw conclusions from our work.

2. The N = (1, 1) NLSM on a doubled torus

Let us start with the non-linear sigma model action in N = (1, 1) superspace on a doubled

torus, T 2 × T̂ 2, where T 2 and T̂ 2 are dual to each other in the sense that the torus T 2

parametrizes the compact part of the 10 dimensional target space, while the torus T̂ 2

parametrizes the directions conjugate to the windings. In this article we calculate the

partition function solely on the compact part of the target space, that is the torus T 2 and

its dual. The torus T 2 has radii R1and R2 for its two circles, while the dual torus T̂ 2 has

radii 1/R1 and 1/R2, respectively. Unhatted and hatted expressions are used to define

quantities on T 2 and T̂ 2, respectively. For example, we denote the superfields on T 2 and

T̂ 2 by Φ and Φ̂, respectively. The N = (1, 1) non-linear sigma model action generalizing

the corresponding bosonic action is

S =
π

4

∫
d2zd2θ[gµνǫabDaΦ

µDbΦ
ν + ĝµνǫabDaΦ̂

µDbΦ̂
ν ]. (2.1)

The superfields are functions of (x, θ, θ), where x represents the spacetime coordinates and

θ and θ are the mutually conjugate Grassmannian supercoordinates. The superfields are

expanded in terms of scalars, Majorana-Weyl spinors and the auxiliary fields as [27]

Φµ(x, θ, θ) = Xµ(x) + iθψµ(x) + iθψ̃µ(x) + θθFµ(x), (2.2)

Φ̂µ(x, θ, θ) = X̂µ(x) + iθψ̂µ(x) + iθ
˜̂
ψ

µ

(x) + θθF̂µ(x). (2.3)

– 2 –
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In (2.1), the measure over the Grassmann coordinates is defined as

d2θ = dθdθ, (2.4)

where the targetspace indices are denoted by µ, ν = 1, 2 and the worldsheet indices by

a, b = 1, 2. The supercovariant derivatives are defined as

D1 = Dθ =
∂

∂θ
+ θ

∂

∂z
, (2.5)

D2 = Dθ =
∂

∂θ
+ θ

∂

∂z
. (2.6)

where z denotes the complex coordinate of the Euclidean worldsheet, while z denotes its

complex conjugate. The metric for the tori T 2 and T̂ 2 are

gµν =

(
R1

2 0

0 R2
2

)
, (2.7)

ĝµν =

(
R1

−2 0

0 R2
−2

)
, (2.8)

respectively.

Using the expressions (2.1) through (2.8) the action S assumes the form

S =
π

2

∫
d2z

[
R1

2(∂zX
1∂zX1 + ψ1∂zψ1 + ψ̃1∂zψ̃1 + F 1F1)

+ R2
2(∂zX

2∂zX2 + ψ2∂zψ2 + ψ̃2∂zψ̃2 + F 2F2)

+ R1
−2(∂zX̂

1∂zX̂1 + ψ̂1∂zψ̂1 +
˜̂
ψ

1

∂z
˜̂
ψ1 + F̂ 1F̂1)

+ R2
−2(∂zX̂

2∂zX̂2 + ψ̂2∂zψ̂2 +
˜̂
ψ

2

∂z
˜̂
ψ2 + F̂ 2F̂2)

]
.

(2.9)

This action is not invariant under the T-duality transformations:

Ri →
1

Ri
, i = 1, 2. (2.10)

To make it T-duality invariant we introduce the geometric constraint equations as in [26].

Towards this we introduce the superfields

P1(x, θ, θ) = R1Φ
1 + R1

−1Φ̂1, (2.11)

P2(x, θ, θ) = R2Φ
2 + R2

−1Φ̂2, (2.12)

Q1(x, θ, θ) = R1Φ
1 − R1

−1Φ̂1, (2.13)

Q2(x, θ, θ) = R2Φ
2 − R2

−1Φ̂2. (2.14)

P and Q can be expanded in terms of components, such as scalars Pµ, Qµ and Majorana-

Weyl spinors ψp’s and ψq’s.

Pµ = Pµ + iθψp
µ + iθψ̃p

µ
+ θθFp

µ, (2.15)

Qµ = Qµ + iθψq
µ + iθψ̃q

µ
+ θθFq

µ, (2.16)
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where µ, ν = 1, 2, and

P 1 = R1X
1 + R−1

1 X̂1, ψp
1 = R1ψ

1 + R−1
1 ψ̂1, ψ̃p

1
= R1ψ

1 + R−1
1 ψ̂1, (2.17)

Q1 = R1X
1 − R−1

1 X̂1, ψq
1 = R1ψ

1 − R−1
1 ψ̂1, ψ̃1

q = R1ψ̃
1 − R−1

1

˜̂
ψ1, (2.18)

where i = 1, 2. A topological term containing the superfields is also added to the action (2.1)

to ensure invariance under large gauge transformations corresponding to the holomorphic

and anti-holomorphic U(1) currents on T 2 ≃ S1 ×S1, generalizing the topological term for

the bosonic case [26]:

Stop = π

∫
d2zd2θ[DθΦ

1DθΦ̂
1 + DθΦ

1DθΦ̂
1 + DθΦ

2DθΦ̂
2 + DθΦ

2DθΦ̂
2]. (2.19)

The superfields P and Q are subject to the chirality constraints
∫

d2θDθP
µ = 0, (2.20)

∫
d2θDθQ

µ = 0, (2.21)

thus making P and Q holomorphic and anti-holomorphic, respectively. Using the expres-

sions (2.17) and (2.18), the action (2.9) becomes

S =
π

4

∫
d2z[(∂zP

1∂zP
1 + ψp

1∂zψp
1 + ψ̃p

1
∂zψ̃p

1
)

+ (∂zP
2∂zP

2 + ψp
2∂zψp

2 + ψ̃p
2
∂zψ̃p

2
)

+ (∂zQ
1∂zQ

1 + ψq
1∂zψq

1 + ψ̃q
1
∂zψ̃q

1
)

+ (∂zQ
2∂zQ

2 + ψq
2∂zψq

2 + ψ̃q
2
∂zψ̃q

2
)].

(2.22)

This action has no explicit dependence on the radii of the two two-tori and is thus mani-

festly T-duality invariant. The action (2.22) is quantum equivalent to that of superstring

theory only if the one-loop partition functions of both theories match. This necessitated

the addition of a topological term in the bosonic case. We extend the topological term

by incorporating the corresponding fermionic contributions so as to preserve N = (1, 1)

superconformal symmetry. The extended topological term takes the form

Stop =π

∫
d2z

[
− 1

2
(∂zP

1∂zQ
1 − ∂zP

1∂zQ
1 + ∂zP

2∂zQ
2 − ∂zP

2∂zQ
2)

+
1

2
(ψ1

p∂zψ
1
q − ψ1

q∂zψ
1
p + ψ2

p∂zψ
2
q − ψ2

q∂zψ
2
p)

+
1

2
(ψ̃1

p∂zψ̃
1
q − ψ̃1

q∂zψ̃
1
p + ψ̃2

p∂zψ̃
2
q − ψ̃2

q∂zψ̃
2
p)

]
.

(2.23)

The equations of motion for the scalars obtained from the action (2.9) have instanton so-

lutions. These solutions are classical and come from periodicity conditions on the compact

bosons. They contribute to the partition function with the sums over the bosonic momenta,

to which we now turn.
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3. The instanton contributions

In this section we consider the contribution of the bosonic instanton sector to the parti-

tion function. To calculate the partition function for chiral bosons one needs to employ

the holomorphic factorization technique so as to retain the contribution with the right

holomorphic dependence. We apply here the same technique for P and Q as in [26].

In calculating the partition function, the superfields Φ in the action (2.1) are replaced

by the combinations L and L̂, periodic under the shifts in the momenta of the scalars along

the circles of T 2. These are given by

Lµ =

∫
DθΦ

µdzdθ +

∫
DθΦ

µdzdθ + Nαµ + Mβµ + N ′αµ + M ′βµ, (3.1)

L̂
µ

=

∫
DθΦ̂

µdzdθ +

∫
DθΦ̂

µdzdθ + N̂αµ + M̂βµ + N̂ ′αµ + M̂ ′βµ, (3.2)

where α and β designate the 1-cycles of the tori, corresponding to T 2 ≃ S1 × S1. The

bosonic parts of these combinations are

Lµ
b =

∫
dXµ + Nαµ + Mβµ, (3.3)

L̂µ
b =

∫
dX̂µ + N̂αµ + M̂βµ, (3.4)

where

N =

(
n1 0

0 n2

)
, N̂ =

(
n̂1 0

0 n̂2

)
, (3.5)

and

M =

(
m1 0

0 m2

)
, M̂ =

(
m̂1 0

0 m̂2

)
. (3.6)

In equations (3.3) and (3.4)

dX = ∂zXdz + ∂zXdz, dX̂ = ∂zX̂dz + ∂zX̂dz (3.7)

The fermionic parts of L and L̂ are given by

Lµ
f = i

∫
dzdθ[ψµ

p + θθ∂zψ̃
µ
p ] + i

∫
dzdθ[ψ̃µ

p + θθ∂zψ
µ
p ], (3.8)

L̂µ
f = i

∫
dzdθ[ψ̂µ

p + θθ∂z
˜̂
ψ

µ

p ] + i

∫
dzdθ[

˜̂
ψ

µ

p + θθ∂zψ̂
µ
p ]. (3.9)

Similarly, the superfields P and Q are also to be combined into periodic combinations with

bosonic and fermionic parts as

Ψµ
b =

∫
dPµ + (RN + R−1N̂)αµ + (RM + R−1M̂)βµ, (3.10)

Υµ
b =

∫
dQµ + (RN − R−1N̂)αµ + (RM − R−1M̂)βµ. (3.11)
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and the fermions ψp and ψq in the same equations are replaced by

Ψµ
f = i

∫
dzdθ[ψµ

p + θθ∂zψ̃µ
p ] + i

∫
dzdθ[ψ̃µ

p + θθ∂zψ
µ
p ], (3.12)

Υµ
f = i

∫
dzdθ[ψµ

q + θθ∂zψ̃µ
q ] + i

∫
dzdθ[ψ̃µ

q + θθ∂zψ
µ
q ]. (3.13)

Here

R =

(
R1 0

0 R2

)
, (3.14)

R−1 =

(
1

R1
0

0 1
R2

)
. (3.15)

Rewriting the action (2.22) in terms of the periodic combinations, Ψµ
b ’s and Υµ

b ’s, and using

equations (3.8)—(3.11), one can extract the terms independent of Ψµ
b ’s and Υµ

b ’s. These

terms contribute to the “instanton” sum. The instanton sector of the partition function

contains sum over all field configurations,

Z inst
b =

∑

n1,m1,

bn1, bm1

∑

n2,m2,

bn2, bm2

exp

(
−(R1n1 + R−1

1 n̂1)
2 π|τ1|2

4τ1
2

+ (R1n1 + R−1
1 n̂1)(R1m1 + R−1

1 m̂1)
πτ1

1

2τ1
2

− (R1m1 + R−1
1 m̂1)

2 π

4τ1
2

− (R2n2 + R−1
2 n̂2)

2 π|τ2|2
4τ2

2

+ (R2n2 + R−1
2 n̂2)(R2m2 + R−1

2 m̂2)
πτ2

1

2τ2
2

− (R2m2 + R−1
2 m̂2)

2 π

4τ2
2

− (R1n1 − R−1
1 n̂1)

2 π|τ1|2
4τ1

2

+ (R1n1 − R−1
1 n̂1)(R1m1 − R−1

1 m̂1)
πτ1

1

2τ1
2

− (R1m1 − R−1
1 m̂1)

2 π

4τ1
2

− (R2n2 − R−1
2 n̂2)

2 π|τ2|2
4τ2

2

+ (R2n2 − R−1
2 n̂2)(R2m2 − R−1

2 m̂2)
πτ2

1

2τ2
2

− (R2m2 − R−1
2 m̂2)

2 π

4τ2
2

)
.

(3.16)

Here τ1
1 and τ1

2 are respectively the real and complex parts of the modular parameter of the

torus T 2 while τ2
1 and τ2

2 are their counterparts for the dual torus T̂ 2. The fermionic parts

of the periodic combinations, Ψµ
f and Υµ

f do not couple with the momenta and windings

and hence do not contribute to the partition function. They simply reproduce the classical

action (2.9) after being squared. The bosons in the topological term contribute only a sign

Ztop
b =

∏

i

exp[iπ(nim̂i − min̂i)] (3.17)

to the partition function, as mentioned above.
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Holomorphic factorization of the partition function calls for Poisson re-summation.

For that one first has to separate the contributions from the scalars P ’s and Q’s in terms

of independent variables. Let us consider the case where the radii of the tori are R2
i = ρi

λi

with coprime integers ρi and λi and let us define ξi = ρiλi, i = 1, 2. Then [26]

Rini ± R−1
i n̂i =

√
ξi(

ni

λi
± n̂i

ρi
). (3.18)

Now we make a substitution

ni = ciλi + λiσλi

n̂i = ĉiρi + ρiσρi
,

(3.19)

where

ci, ĉi ∈ Z and σλi
∈ {0, 1/λi, · · · , λi − 1/λi}. (3.20)

We can write
√

ξi(
ni

λi
± n̂i

ρi
) =

√
ξi(ci ± ĉi + σλi

± σρi
). (3.21)

A further substitution with hi = ci + ĉi and li = ci − ĉi allows us to rewrite the sum over ni

and n̂i as sum over hi and li ∈ Z. Since hi − li = 2ĉi, we restrict to even values of hi − li.

This is done by inserting a factor of

1

2

∑

φ∈{0,1/2}

exp [2πiφ(hi − li)]

in (3.16). One can repeat the process for the mi and m̂i sums and including the contribution

from the bosonic parts of the topological terms, the instanton piece of the partition function

becomes

Z inst
b =

∏

i

∑

φ,χ,σλi
,σρi

,σ′

λi
,σ′

ρi

hi,li,si,ti

1

16
exp

[
− πξi

4
((hi + σλi

+ σρi
)2
|τ i|2
τ i
2

− 2(hi + σλi
+ σρi

)(si + σ′
λi

+ σ′
ρi

)
τ i
1

τ i
2

+ (si + σ′
λi

+ σ′
ρi

)2
1

τ i
2

+ (li + σλi
− σρi

)2
|τ i|2
τ i
2

− 2(li + σλi
− σρi

)(ti + σ′
λi

− σ′
ρi

)
τ i
1

τ i
2

+ (ti + σ′
λi

− σ′
ρi

)2
1

τ i
2

) + 2πi(φ(hi − li) + χ(si − ti))

+
iπξ

2
((li + σλi

− σρi
)(si + σ′

λi
+ σ′

ρi
) − (hi + σλi

+ σρi
)(ti + σ′

λi
− σ′

ρi
)

]
.

(3.22)

Now we define σ±
i = σλi

± σρi
. After summing over si and ti, the contribution from

– 7 –
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the scalar fields P to the partition function (3.22) is given by

Z instP
b =

∏

i

∑

φ,χ,σλi
,σρi

,σ′

λi
,σ′

ρi

hi,li,ui

1

8

√
4τ i

2

ξi
exp

[
− πξi

4

(
(hi + σ+

i )2
|τ i|2
τ i
2

− 2σ′+
i (hi + σ+

i )
τ i
1

τ i
2

+ (σ′+
i )2

1

τ i
2

)
+ 2πiφhi +

iπξi

2
(li + σ−

i )σ′+
i

− 4πτ i
2

ξi

(
ui − χ + iξi

(hi + σ+
i )

4

τ i
1

τ i
2

− iξiσ
′+
i

4τ i
2

− ξi

4
(li + σ−

i )2
)]

.

(3.23)

On rearranging the sum takes the form

Z instP
b =

∏

i

∑

φ,χ,σλi
,σρi

,σ′

λi
,σ′

ρi

hi,li,ui

√
τ i
2

ξi
exp

[
− πξi

4
(hi + σ+

i )2

− 4ξi

(
ui − χ

ξi
− 1

4
(li + σ−

i )

)2

+
iπξi

2
(li + σ−

i )σ′+
i

− 2πτ i
1(hi + σ+

i )

(
ui − χ − ξi

4
(li + σ−

i )

)
+ 2πiφhi + 2πi(ui − χ)σ′+

i

]
.

(3.24)

Similar expressions can be written for the fields Q with hi replaced by li. Combining the

contributions from the scalar fields P ’s and Q’s, the instanton part of the partition function

for the bosons is written as

Z inst
b =

∏

i

∑

φ,χ,σλi
,σρi

,σ′

λi
,σ′

ρi

hi,li,ui,bui

(√
τ i
2

2ξi
exp

[
iπξiτ

i p
i
L

2

2
− iπξiτ

i p
i
R

2

2

+ 2πi(φhi + (ui − χ)σ′+
i )

])

×
(√

τ i
2

2ξi
exp

[
iπξiτ

i q
i
L

2

2
− iπξiτ

i q
i
R

2

2
+ 2πi(φli + (ûi + χ)σ′+

i )

])
,

(3.25)

where

pi
L =

1

2
(hi + σ+

i ) − 2

(
ui − χ

ξi
− 1

4
(li + σ−

i )

)
,

pi
R =

1

2
(hi + σ+

i ) + 2

(
ui − χ

ξi
− 1

4
(li + σ−

i )

)
,

qi
L =

1

2
(li + σ−

i ) − 2

(
ûi + χ

ξi
− 1

4
(hi + σ+

i )

)
,

qi
R =

1

2
(li + σ−

i ) + 2

(
ûi + χ

ξi
− 1

4
(hi + σ+

i )

)
.

(3.26)

The sums over hi, li, σ+
i , σ−

i , φ etc can be replaced by sums over ni and n̂i using the

expressions (3.19) and making use of the identity

∑

ξ=0

(
exp

(
2πiξ

n

))j

=
∑

σn

exp (2πiσnj) =

{
n, if j = 0 mod n

0, otherwise.
(3.27)
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Consequently, we have

ui + ûi = 0 mod λi,

ui − ûi − 2χ = 0 mod ρi,
(3.28)

and these criteria are satisfied by the choice

ui − χ

ξi
=

1

2

(
ωi

ρi
+

ω̂i

λi

)
,

ûi + χ

ξi
=

1

2

(
ωi

ρi
− ω̂i

λi

)
. (3.29)

where we have replaced the sums over ui, ûi, χ, σ′
λi

and σ′
ρi

by sums over wi and ŵi ∈ Z.

We can now identify the left-moving and right-moving momenta as

pi
L =

ni

λi
−

(
ωi

ρi
+

ω̂i

λi

)
.

pi
R =

n̂i

λi
+

(
ωi

ρi
+

ω̂i

λi

)
.

qi
L = − n̂i

ρi
−

(
ωi

ρi
− ω̂i

λi

)
.

qi
R =

ni

ρi
+

(
ωi

ρi
− ω̂i

λi

)
.

(3.30)

The doubled partition function for the bosons can now be written as

Zdoubled
b =

∏

i

∑

pi
L

,pi
R

√
2τ i

2 exp

[
iπξiτ

i p
i
L

2

4
− iπξiτ

i p
i
R

2

4

]

×
∑

qi
L

,qi
R

√
2τ i

2 exp

[
iπξiτ

i q
i
L

2

4
− iπξiτ

i q
i
R

2

4

]
.

(3.31)

Since the momentum sums are decoupled we can keep only the holomorphic part of the

doubled partition function from both P s and Qs. This gives us the contribution of the

bosonic fields to the partition functions on a two-torus.

Zholo
b =

∏

i

∑

pi
L

,qi
R

√
2τ i

2 exp

[
iπξiτ

i p
i
L

2

4
− iπξiτ

i q
i
R

2

4

]
. (3.32)

The holomorphic factorization of the “instanton” sum guarantees the inclusion of all

spin structures necessary for the chiral bosons. Thus the contributions from the bosonic

instanton sector to the partition function give us the sum over the entire momentum lattice.

4. The oscillator contributions

The contribution to the partition function from the oscillator sectors of bosons and fermions

can be obtained by evaluating the path integral with the action (2.9). For the bosonic case

– 9 –
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this yields the (squared) partition function of the bosonic string theory [26] on a two-torus.

Let us discuss this in brief. The path integral for bosons is

Zosc
b =

∫
DX1DX2 exp

[
−π

2

∫
d2z[R2

1∂zX
1∂zX

1 + R2
2∂zX

2∂zX
2]

]
, (4.1)

which evaluates to

Zosc
b =

R1√
2det ¤

R2√
2det¤

, (4.2)

with det¤ = τ1
2 η2(τ)η2(τ), where η(τ) is the Dedekind η-function

η(τ) = eiπ/12
∏

n>1

(1 − e2πinτ ). (4.3)

where τ is the modular parameter on the worldsheet torus.

The path integral over the dual fields φ̂ gives a similar expression, the only difference

being that the radii R1 and R2 appear in the denominator. Taking all the bosonic contri-

butions into account, the square-root of the path integral contributes the following piece

to the partition function

Zb =
∏

i

∑

pi
L

,qi
R

1

|η|4 exp

[
iπτ

(pi
L)

2

4
− iπτ

(qi
R)

2

4

]
. (4.4)

Since the radii of the two-torus appearing in the expression (4.2) cancel with those

appearing in the expression for the dual bosons the final expression above for the bosons

is T-duality invariant. Let us now discuss the fermionic contributions. The path integral

for the fermions is

Zosc
f =

∫
Dψ1Dψ2Dψ̃1Dψ̃2 exp

(
− π

2

∫
d2z

(
R2

1(ψ
1∂zψ1 + ψ̃1∂zψ̃1)

+ R2
2(ψ

2∂zψ2 + ψ̃2∂zψ̃2)
))

× exp [topological terms for fermions].

(4.5)

The topological terms for the fermions are total derivatives which do not contribute to

the fermionic equations of motion, nor do they contribute to the path integral. In the

path integral (4.5) since the two fields ψ and ψ̃ are decoupled, the partition function is the

product of the Pfaffians of the differential operators ∂z and ∂z [30],

Z = Pf(∂z)Pf(∂z). (4.6)

As the product ∂z∂z is the two-dimensional Laplacian, we get

Z = (det∇2)
1

2 . (4.7)

Now we impose periodicity conditions on the fermions. When translated by a period the

fermions pick up a phase.

ψ(z + φ) = e2iπνψ(z). (4.8)
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For ν ∈ Z, ψ and ψ̃ are periodic and for ν ∈ (Z + 1/2), both are antiperiodic. The

combinations of periodic(P) and antiperiodic(A) boundary conditions for the holomorphic

and antiholomorphic fields are used to define the spin structure of the fermions, that

is, the Ramond (periodic) and Neveu-Schwarz (antiperiodic) sectors. Again, due to the

factorization of the holomorphic and the antiholomorphic parts it suffices to compute the

integral for the holomorphic fields only and the partition function is evaluated as

Z = |det ∂z|2. (4.9)

Evaluating the regularized products with P and A boundary conditions, we obtain

(det ∂z)A,A =
ϑ3(τ)

η(τ)
, NS − NS

(det ∂z)A,P =
ϑ4(τ)

η(τ)
, NS − R

(det ∂z)P,A =
ϑ2(τ)

η(τ)
, R − NS

(det ∂z)P,P =
ϑ1(τ)

η(τ)
. R − R

(4.10)

The contributions from the dual fermions are obtained in the same way with the same

results. The partition function for the fermions on T 2 is given by the combinations of

theta functions. In order to obtain the partition function of type-II theories, however, one

now has to impose the GSO projections, as usual.

Upon choosing the GSO projection exp(iπF ) = 1, we obtain the partition function of

the type-IIB theory, viz.

Zosc
f =

1

|η|2 |ϑ3 − ϑ4 − ϑ2 + ϑ1|2. (4.11)

Choosing, on the other hand, the GSO projection = exp(iπF̃ ) = (−1)α, with α = 1 in the

R-sector and α = 0 in the NS-sector, gives the partition function of the type-IIA theory,

viz.

Zosc
f =

1

|η|2 (ϑ3 − ϑ4 − ϑ2 + ϑ1)(ϑ3 − ϑ4 − ϑ2 − ϑ1). (4.12)

Finally, combining the expressions obtained above, the total partition function for the

type-IIB theory is obtained as

Z =
∏

i

∑

n1,n2,ω1,ω2

1

|η|6 exp

[
iπτ

(pi
L)

2

2
− iπτ

(qi
R)

2

2

]
× |ϑ3 − ϑ4 − ϑ2 + ϑ1|2. (4.13)

The total partition function for the type-IIA theory is obtained similarly, with the afore

mentioned GSO projection as

Z =
∏

i

∑

n1,n2,ω1,ω2

1

|η|6 exp

[
iπτ

(pi
L)

2

2
− iπτ

(qi
R)

2

2

]
× (ϑ3 −ϑ4 −ϑ2 + ϑ1)(ϑ3−ϑ4 −ϑ2 −ϑ1).

(4.14)
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5. Conclusion

To summarize, we have studied the supersymmetric extension of the doubled formalism.

We evaluated the partition function of the N = (1, 1) NLSM on a doubled-torus, T 2 ×
T̂ 2. The superstring partition functions turn out to be the squareroot of the partition

function of this theory and are T-duality invariant. For the bosonic case, a topological

term had to be added to the NLSM on the doubled torus for quantum consistency. In

order to maintain supersymmetry in our case, a supersymmetric extension of the same

by fermions is required. However, these extra fermions conspired not to contribute to the

partition functions. This supersymmetric model, thus, reproduces the one-loop partition

functions of type-II theories exactly. Thus the calculations presented here provide a non-

trivial verification of the doubled formalism, extending to the supersymmetric cases. This

matching, however, requires a separate choice of the GSO projections as in the traditional

formulations of type-II theories. It would be interesting to study the Hilbert space of

the NLSM on the doubled torus and compare with the spectra of the type-II theories

directly. The fermions in the supersymmetrically extended topological terms may have an

interesting role to play in such a study. Extension of this formalism to study superstrings

on more complicated spaces, such as K3 and Calabi-Yau manifolds will also be interesting.

These will be useful in formulating a T-duality invariant string theory. Finally, formulation

presented here can be applied to the case of N = (1, 0) superspace, relevant for the Heterotic

strings.
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[2] P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary,

Nucl. Phys. B 475 (1996) 94 [hep-th/9603142].

[3] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022].

[4] A. Sen, F-theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150].

[5] A. Kumar and C. Vafa, U-manifolds, Phys. Lett. B 396 (1997) 85 [hep-th/9611007].

[6] I. Bars, S-theory, Phys. Rev. D 55 (1997) 2373 [hep-th/9607112].

[7] I. Bars, Algebraic structure of S-theory, lectures given at 2nd International Sakharov

Conference on Physics, Moscow, Russia, 20-23 May (1996) and at Strings 96, Santa Barbara,

CA, 15-20 Jul (1996), hep-th/9608061.

[8] C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065

[hep-th/0406102].

– 12 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C506
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C506
http://arxiv.org/abs/hep-th/9510209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB475%2C94
http://arxiv.org/abs/hep-th/9603142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB469%2C403
http://arxiv.org/abs/hep-th/9602022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB475%2C562
http://arxiv.org/abs/hep-th/9605150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB396%2C85
http://arxiv.org/abs/hep-th/9611007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C2373
http://arxiv.org/abs/hep-th/9607112
http://arxiv.org/abs/hep-th/9608061
http://jhep.sissa.it/stdsearch?paper=10%282005%29065
http://arxiv.org/abs/hep-th/0406102


J
H
E
P
0
9
(
2
0
0
7
)
1
2
7

[9] C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149].

[10] C.M. Hull, Global aspects of T-duality, gauged sigma models and T-folds, hep-th/0604178.

[11] C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203].

[12] A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05

(2006) 009 [hep-th/0512005].

[13] A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054

[hep-th/0210209].

[14] R.A. Reid-Edwards, Geometric and non-geometric compactifications of IIB supergravity,

hep-th/0610263.

[15] M. Graña, RTN winter school on strings, supergravity and gauge theories, Geneva,

Switzerland, 16-20 Jan (2006), Class. and Quant. Grav. 23 (2006) 883.

[16] F. Marchesano and W. Schulgin, Non-geometric fluxes as supergravity backgrounds,

LMU-ASC-26-07 [MPP-2007-49] [arXiv:0704.3272].

[17] S. Morris, Doubled geometry versus generalized geometry, Class. and Quant. Grav. 24 (2007)

2879.

[18] J. Gray and E.J. Hackett-Jones, On T-folds, G-structures and supersymmetry, JHEP 05

(2006) 071 [hep-th/0506092].

[19] J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005)

085 [hep-th/0508133].

[20] J. Kalkkinen, Non-geometric magnetic flux and crossed modules, hep-th/0510135.

[21] A. Flournoy and B. Williams, Nongeometry, duality twists and the worldsheet, JHEP 01

(2006) 166 [hep-th/0511126].

[22] A. Lawrence, M.B. Schulz and B. Wecht, D-branes in nongeometric backgrounds, JHEP 07

(2006) 038 [hep-th/0602025].

[23] P. Grange and S. Schafer-Nameki, T-duality with H-flux: non-commutativity, t-folds and

G × G structure, Nucl. Phys. B 770 (2007) 123 [hep-th/0609084].

[24] S. Hellerman and J. Walcher, Worldsheet CFTS for flat monodrofolds, hep-th/0604191.

[25] E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus, JHEP 10

(2006) 062 [hep-th/0605114].

[26] D.S. Berman and N.B. Copland, The string partition function in hull’s doubled formalism,

Phys. Lett. B 649 (2007) 325 [hep-th/0701080].

[27] J. Polchinski, String theory, vol. I and vol. II, Cambridge Monographs on Mathematical

Physics, Cambridge University Press (1999).

[28] D. Belov and G.W. Moore, Holographic action for the self-dual field, hep-th/0605038.

[29] P.D. Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer (1999)

[30] C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376

(2003) 339] [hep-th/0204089].

– 13 –

http://jhep.sissa.it/stdsearch?paper=07%282007%29080
http://arxiv.org/abs/hep-th/0605149
http://arxiv.org/abs/hep-th/0604178
http://jhep.sissa.it/stdsearch?paper=07%282007%29079
http://arxiv.org/abs/hep-th/0701203
http://jhep.sissa.it/stdsearch?paper=05%282006%29009
http://jhep.sissa.it/stdsearch?paper=05%282006%29009
http://arxiv.org/abs/hep-th/0512005
http://jhep.sissa.it/stdsearch?paper=09%282003%29054
http://arxiv.org/abs/hep-th/0210209
http://arxiv.org/abs/hep-th/0610263
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2C883
http://www-spires.slac.stanford.edu/spires/find/hep/www?r= LMU-ASC-26-07
http://www-spires.slac.stanford.edu/spires/find/hep/www?r= MPP-2007-49
http://arxiv.org/abs/0704.3272
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C2879
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C2879
http://jhep.sissa.it/stdsearch?paper=05%282006%29071
http://jhep.sissa.it/stdsearch?paper=05%282006%29071
http://arxiv.org/abs/hep-th/0506092
http://jhep.sissa.it/stdsearch?paper=10%282005%29085
http://jhep.sissa.it/stdsearch?paper=10%282005%29085
http://arxiv.org/abs/hep-th/0508133
http://arxiv.org/abs/hep-th/0510135
http://jhep.sissa.it/stdsearch?paper=01%282006%29166
http://jhep.sissa.it/stdsearch?paper=01%282006%29166
http://arxiv.org/abs/hep-th/0511126
http://jhep.sissa.it/stdsearch?paper=07%282006%29038
http://jhep.sissa.it/stdsearch?paper=07%282006%29038
http://arxiv.org/abs/hep-th/0602025
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB770%2C123
http://arxiv.org/abs/hep-th/0609084
http://arxiv.org/abs/hep-th/0604191
http://jhep.sissa.it/stdsearch?paper=10%282006%29062
http://jhep.sissa.it/stdsearch?paper=10%282006%29062
http://arxiv.org/abs/hep-th/0605114
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB649%2C325
http://arxiv.org/abs/hep-th/0701080
http://arxiv.org/abs/hep-th/0605038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C371%2C1
http://arxiv.org/abs/hep-th/0204089

